Unidirectional and parallel Baum-Welch algorithms
نویسنده
چکیده
Hidden Markov models (HMM’s) are popular in many applications, such as automatic speech recognition, control theory, biology, communication theory over channels with bursts of errors, queueing theory, and many others. Therefore, it is important to have robust and fast methods for fitting HMM’s to experimental data (training). Standard statistical methods of maximum likelihood parameter estimation (such as Newton–Raphson, conjugate gradients, etc.) are not robust and difficult to use for fitting HMM’s with many parameters. On the other hand, the Baum–Welch algorithm is robust, but slow. In this paper, we present a parallel version of the Baum–Welch algorithm. We consider also unidirectional procedures which, in contrast with the well-known forward-backward algorithm, use the amount of memory that is independent of the observation sequence length.
منابع مشابه
Generalized Baum-Welch and Viterbi Algorithms Based on the Direct Dependency among Observations
The parameters of a Hidden Markov Model (HMM) are transition and emission probabilities‎. ‎Both can be estimated using the Baum-Welch algorithm‎. ‎The process of discovering the sequence of hidden states‎, ‎given the sequence of observations‎, ‎is performed by the Viterbi algorithm‎. ‎In both Baum-Welch and Viterbi algorithms‎, ‎it is assumed that...
متن کاملComparing the Bidirectional Baum-Welch Algorithm and the Baum-Welch Algorithm on Regular Lattice
A profile hidden Markov model (PHMM) is widely used in assigning protein sequences to protein families. In this model, the hidden states only depend on the previous hidden state and observations are independent given hidden states. In other words, in the PHMM, only the information of the left side of a hidden state is considered. However, it makes sense that considering the information of the b...
متن کاملTraining Algorithms for Hidden Markov Models using Entropy Based Distance Functions
We present new algorithms for parameter estimation of HMMs. By adapting a framework used for supervised learning, we construct iterative algorithms that maximize the likelihood of the observations while also attempting to stay “close” to the current estimated parameters. We use a bound on the relative entropy between the two HMMs as a distance measure between them. The result is new iterative t...
متن کاملComparative Study of the Baum-Welch and Viterbi Training Algorithms Applied to Read and Spontaneous Speech Recognition
In this paper we compare the performance of acoustic HMMs obtained through Viterbi training with that of acoustic HMMs obtained through the Baum-Welch algorithm. We present recognition results for discrete and continuous HMMs, for read and spontaneous speech databases, acquired at 8 and 16 kHz. We also present results for a combination of Viterbi and Baum-Welch training, intended as a trade-off...
متن کاملHidden Gauss-Markov models for signal classification
Continuous-state hidden Markov models (CS-HMMs) are developed as a tool for signal classification. Analogs of the Baum, Viterbi, and Baum–Welch algorithms are formulated for this class of models. The CS-HMM algorithms are then specialized to hidden Gauss–Markov models (HGMMs) with linear Gaussian state-transition and output densities. A new Gaussian refactorization lemma is used to show that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Speech and Audio Processing
دوره 6 شماره
صفحات -
تاریخ انتشار 1998